Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: Multiscale deep drawing analysis of dual-phase steels using grain cluster-based RGC scheme. Modelling and Simulation in Materials Science and Engineering 23 (4), 045005 (2015)
Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: A novel grain cluster-based homogenization scheme. Modelling and Simulation in Materials Science and Engineering 18 (1), 015006, pp. 015006-1 - 015006-21 (2010)
Eisenlohr, P.; Tjahjanto, D. D.; Hochrainer, T.; Roters, F.; Raabe, D.: Comparison of texture evolution in fcc metals predicted by various grain cluster homogenization schemes. International Journal of Materials Research 100 (4), pp. 500 - 509 (2009)
Tjahjanto, D. D.; Turteltaub, S.; Suiker, A.S.J.; van der Zwaag, S.: A Micromechanical Study of the Deformation Behavior of TRIP-Assisted Multiphase Steels as a Function of the Microstructural Parameters of the Retained Austenite. Advanced Engineering Materials 11 (3), pp. 153 - 157 (2009)
Tjahjanto, D. D.; Roters, F.; Eisenlohr, P.: Iso-Work-Rate Weighted-Taylor Homogenization Scheme for Multiphase Steels Assisted by Transformation-induced Plasticity Effect. Steel Research International 78 (10/11), pp. 777 - 783 (2007)
Roters, F.; Eisenlohr, P.; Kords, C.; Tjahjanto, D. D.; Diehl, M.; Raabe, D.: DAMASK: The Düsseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. IUTAM Symposium on Linking Scales in Computations: From Microstructure to Macro-scale Properties, Pensacola, FL, USA, May 17, 2011 - May 19, 2011. IUTAM Symposium on Linking Scales in Computations: From Microstructure to Macro-scale Properties, (2012)
Eisenlohr, P.; Tjahjanto, D. D.; Hochrainer, T.; Roters, F.; Raabe, D.: Texture Prediction from a Novel Grain Cluster-Based Homogenization Scheme. 12th International ESAFORM Conference on Material Forming, Enschede, The Netherlands. International Journal of Material Forming 2 (1/August 2009), p. 523 - 523 (2009)
Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: Relaxed Grain Cluster (RGC) Homogenization Scheme. 12th International ESAFORM Conference on Material Forming, Enschede [Netherlands], 2009. International Journal of Material Forming 2 (1/August 2009), pp. 939 - 942 (2009)
Roters, F.; Eisenlohr, P.; Tjahjanto, D. D.; Kords, C.; Diehl, M.; Raabe, D.: DAMASK: The Düsseldorf Advanced Material Simulation Kit for studying crystal plasticity using FEM and FFT based numerical solvers. 18th International Symposium on Plasticity & Its Current Applications, San Juan, Puerto Rico (2012)
Roters, F.; Eisenlohr, P.; Tjahjanto, D. D.; Kords, C.; Raabe, D.: A modular crystal plasticity framework applicable from component to single grain scale. IUTAM Symposium Linking Scales in Computations: From Microstructure to Macro-scale Properties, Pensacola, FL, USA (2011)
Tjahjanto, D. D.; Roters, F.; Eisenlohr, P.: Prediction of material response in cup drawing using relaxed grain cluster (RGC) homogenization scheme. International Conference on Numerical Methods in Industrial Forming Process (NUMIFORM) 2010, Pohang, South Korea (2010)
Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: Computational method for simulating polycrystalline material response using relaxed grain cluster model. European Congress on Computational Mechanics (ECCM) 2010, Paris, France (2010)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Understanding hydrogen-assisted embrittlement of advanced high-strength steels is decisive for their application in automotive industry. Ab initio simulations have been employed in studying the hydrogen trapping of Cr/Mn containing iron carbides and the implication for hydrogen embrittlement.
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…