Parezanovic, I.; Strauch, E.; Spiegel, M.: Development of spinel forming alloys with improved electronic conductivity for MCFC application. Journal of Power Sources 135, pp. 52 - 61 (2004)
Parezanović, I.; Spiegel, M.; Strauch, E.; Grabke, H.-J.: High alloyed stainless steels containing Co, Mn, Mo, Ni, Si as possible cathode current collectors in MCFC. In: Proceedings of International Congress on Advanced Materials, pp. 1 - 8. Materials Week 2001, International Congress on Advanced Materials, München, Germany, October 01, 2001 - October 04, 2001. (2001)
Spiegel, M.; Parezanovic, I.; Strauch, E.; Grabke, H. J.: Spinel forming stainless steels as possible current collector materials for molten carbon ate fuel cells. Fuel Cells Science and Technology, Amsterdam, The Netherlands (2002)
Sánchez Pastén, M.; Strauch, E.; Spiegel, M.: High temperature corrosion of metallic materials in simulated waste incineration conditions at 300-600 °C. EFC Workshop: Novel approaches to the improvement of high temperature corrosion resistance, DECHEMA, Frankfurt, Germany (2004)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…