Salgin, B.; Hamou, F. R.; Rohwerder, M.: Monitoring surface ion mobility on aluminum oxide: Effect of chemical pretreatments. Electrochimica Acta 110, pp. 526 - 533 (2013)
Hamou, F. R.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical simulation of probing the electric double layer by scanning electrochemical potential microscopy. Electrochimica Acta 55 (18), pp. 5210 - 5222 (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical Investigation of Electrode Surface Potential Mapping with Scanning Electrochemical Potential Microscopy. The 12th International Scanning Probe Microscopy Conference, Sapporo, Japan (2010)
Bashir, A.; Muglali, M. I.; Hamou, R. F.; Rohwerder, M.: SECPM Study: Influence of the Tip Material and Its Coating on the Accuracy of Potential Profiling Across Electrical Double Layer at Solid/Liquid Interface. 217th ECS Meeting, Vancouver, Canada (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical simulation of probing the electric double layer by scanning electrochemical Potential microscopy. 217th ECS Meeting, Vancouver, Canada (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical simulation of probing the electric double layer by scanning electrochemical potential microscopy. International Workshops on Surface Modification for Chemical and Biochemical Sensing, Przegorzaly, Poland (2009)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Screening effects in probing the double layer by scanning electrochemical potential microscopy. Comsol European Conference October 2009, Milan, Italy (2009)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Simulation of probing the electric double layer by scanning electrochemical potential microscopy (SECPM). 11th International Fischer Symposium on Microscopy in Electrochemistry, Benediktbeuern, Germany (2009)
Hamou, R. F.; Biedermann, P. U.; Blumenau, A. T.: FEM Simulation of the Scanning Electrochemical Potential Microscopy (SECPM). SurMat Seminar, Schloß Gnadenthal, Kleve, Germany (2008)
Hamou, R. F.; Erbe, A.; Rohwerder, M.: Screening effects in probing the double layer by scanning electrochemical potential microscopy. Comsol European Conference October 2009, Milan, Italy (2009)
Hamou, R. F.; Biedermann, P. U.; Rohwerder, M.; Blumenau, A. T.: FEM Simulation of the Scanning Electrochemical Potential Microscopy (SECPM). 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Hamou, F. R.: Numerical Investigation of Scanning Electrochemical Potential Microscopy (SECPM). Dissertation, Fakultät für Physik und Astronomie der Ruhr-Universität, Bochum, Germany (2010)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…