Eisenlohr, P.; Tjahjanto, D. D.; Roters, F.; Raabe, D.: Coarse-graining of polycrystal plasticity with the Relaxed Grain Cluster scheme. Seminar des Instituts für Technische Mechanik, Karlsruher Institut für Technologie, Karlsruhe, Germany (2009)
Roters, F.; Demir, E.; Eisenlohr, P.: On the calculation of the geometrically necessary dislocation density in crystal plasticity FEM models. 1st International Conference on Material Modelling (ICMM 1), Dortmund, Germany (2009)
Tjahjanto, D. D.; Roters, F.; Eisenlohr, P.: Application of the relaxed grain cluster homogenization scheme to deep drawing simulation of dual-phase steel. 1st International Conference on Material Modelling (ICMM 1), Dortmund, Germany (2009)
Eisenlohr, P.; Tjahjanto, D. D.; Roters, F.; Raabe, D.: Analysis of the relaxed grain cluster polycrystal homogenization scheme in texture prediction. 15th International Conference on the Strength of Materials (ICSMA-15), Dresden, Germany (2009)
Roters, F.; Hantcherli, L.; Eisenlohr, P.: Incorporating Twinning into the Crystal Plasticity Finite Element Method. International Plasticity Conference 2009, Virgin Islands, USA (2009)
Bieler, T. R.; Crimp, M. A.; Eisenlohr, P.; Roters, F.; Raabe, D.: Physically based Approach for Predicting Damage Nucleation at Grain Boundaries in Commercial Purity Ti. 15th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Eisenlohr, P.; Roters, F.: Accurate Texture Reconstruction with a Set of Orientations Based on Integral Approximation of the Scaled Orientation Distribution Function. 15 th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Hantcherli, L.; Eisenlohr, P.; Roters, F.; Raabe, D.: On the Role of Mechanical Twinning in Microstructure Evolution of High Manganese Steels: Experiments and Modelling. 15th International Conference on Textures of Materials (ICOTOM15), Carnegie Mellon University Center in Pittsburgh, PA, USA (2008)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…