Al-Sawalmih, A.; Fabritius, H.; Yi, S. B.; Li, C.; Siegel, S.; Raabe, D.; Paris, O.: Investigation of the Orientation Relationship Between α-Chitin and Calcite in Crustacean Cuticle Using Microbeam Synchrotron X-ray Diffraction. 15th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Raabe, D.; Sachs, C.; Fabritius, H.; Romano, P.; Raue, L.; Klein, H.; Al-Sawalmih, A.: Crystallographic Textures from the Exoskeleton of the Lobster Homarus Americanus and Calculation of the Mechanical Properties of the Calcite Phase. 15th International Conference on the Textures of Materials (ICOTOM 15), Carnegie Mellon University Center, Pittsburgh, PA, USA (2008)
Sachs, C.; Romano, P.; Raue, L.; Fabritius, H.; Klein, H.; Paris, O.; Al-Sawalmih, A.; Fratzl, P.; Wu, X.; Raabe, D.: Crystallographic and topological textures of biological materials and the resulting anisotropy of the mechanical properties. 15th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Nikolov, S.; Raabe, D.; Sachs, C.; Fabritius, H.: Hierarchical modeling of the mechanical properties of hard biological tissues: Bone and lobster cuticle. MSU conference, MPIE Düsseldorf, Germany (2008)
Fabritius, H.; Sachs, C.; Nikolov, S.; Romano, P.; Hild, S.; Raabe, D.: Wie beeinflussen Struktur und chemische Zusammensetzung auf unterschiedlichen Längenskalen die mechanischen Eigenschaften von biologischen Materialien ? Institute Colloquium, Department of Polymer Science, Johannes Kepler University Linz (JKU), Linz, Austria (2008)
Sachs, C.; Fabritius, H.; Pitsch, F.; Raabe, D.: Nanoindentation as tool to investigate micro-mechanical properties in the hierarchical structure of biological materials. MRS Fall Meeting, Boston, MA, USA (2007)
Nikolov, S.; Sachs, C.; Counts, W. A.; Fabritius, H.; Raabe, D.: Modeling of the Mechanical Behavior of Bone at Submicron Scale through Mean-Field Homogenization. European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2007), Nürnberg, Germany (2007)
Sachs, C.; Fabritius, H.; Nikolov, S.; Raabe, D.: Influence of structural principles on the mechanics and efficiency of different biological materials using lobster cuticle as a model material. DPG Spring Meeting, Regensburg, Germany (2007)
Nikolov, S.; Sachs, C.; Fabritius, H.; Raabe, D.: Microstructure and micromechanics of hard biological tissues: From lobster cuticle to human bone. Seminar talk at Université Catholique de Louvain, Dept. of Applied Sciences, Louvain, Belgium (2007)
Fabritius, H.; Sachs, C.; Raabe, D.: Influence of structural principles on the mechanics and efficiency of different biological materials using lobster cuticle as a model material. Second International Conference on Mechanics of Biomaterials & Tissues (ICMBT 2007), Lihue, HI, USA (2007)
Raabe, D.; Al-Sawalmih, A.; Raue, L.; Klein, H.; Fabritius, H.: Texture of Alpha-chitin and Calcite as a Microscopic Composite Design and Macroscopic Biological Construction Principle of the Exoskeleton of the Lobster Homarus americanus. MRS Fall Conference, Boston, MA, USA (2006)
Sachs, C.; Fabritius, H.; Raabe, D.: Mechanical Properties of the Lobster Cuticle Investigated by Bending Tests and Digital Image Correlation. MRS Fall Conference, Boston, MA, USA (2006)
Sachs, C.; Fabritius, H.; Romano, P.; Raabe, D.: Viscoelastic Behavior of Lobster Cuticle as a Function of Mineralization Grade. MRS Fall Meeting, Boston, MA, USA (2005)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…