Hengge, K. A.; Scheu, C.: Stability of a novel Pt/Ru catalyst for polymer electrolyte membrane fuel cells. 64. Metallkunde-Kolloquium, Lech am Arlberg, Austria (2018)
Hengge, K. A.; Scheu, C.: Novel electrodes for polymer based fuel cells. The 18th Israel Materials Engineering Conference (IMEC18), Dead Sea, Israel (2018)
Hengge, K.: TEM Tomography: Insights into the degradation of Pt/Ru fuel cell catalysts. 3D materials characterization at all length scales and its application to iron and steel, MPIE Düsseldorf, Düsseldorf, Germany (2017)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Insights into degradation processes in WO3-x based anodes of HT-PEMFCs via electron microscopic techniques. Fuel Cells Science and Technology 2016 , Glasgow, Scotland, UK (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Welsch, M. T.; Scheu, C.: Template-free synthesized high surface area 3D networks of Pt on WO3-x – a promising alternative for H2 oxidation in fuel cell application. 2016 MRS Fall Meeting, Boston, MA, USA (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Electron microscopic insights into degradation processes in high temperature polymer electrolyte membrane fuel cells. Scandem 2015, Jyväskylä, Finland (2015)
Gänsler, T.; Hengge, K. A.; Scheu, C.: 3D Reconstruction of Identical Location Electron Micrographs – Methodology and Pitfalls. IAMNano 2019, International Workshop on Advanced and In-situ Microscopies of Functional Nanomaterials and Devices, Düsseldorf, Germany (2019)
Gänsler, T.; Hengge, K. A.; Beetz, M.; Pizzutilo, E.; Scheu, C.: Tracking the Degradation of Fuel Cell Catalyst Particles: 3D Reconstruction of Nanoscale Transmission Electron Micrographs. CINEMAX IV, "Best poster Award at the Summer School", Toreby, Denmark (2018)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Welsche, M.; Scheu, C.: Material optimization for high-temperature polymer-electrolyte-membrane fuel cells. Material optimization for high-temperature polymer-electrolyte-membrane fuel cells, Duisburg, Germany (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Welsch, M. T.; Scheu, C.: Growth of novel Pt 3D networks on WO3-x electrodes and their effect on the performance of fuel cells. EMC 2016, 16th European Microscopy Congress, Lyon, France (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Electron microscopy studies of WO3-x based anodes for high temperature polymer electrolyte membrane fuel cells. IAM Nano 2015, Hamburg, Germany (2015)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Degradation analysis of high temperature polymer electrolyte membrane fuel cells via electron microscopic techniques. TEM-UCA European Summer Workshop, Cadiz, Spain (2015)
Hengge, K.: Investigation of alternative catalyst and support materials and their effect on degradation in high-temperature polymer-electrolyte-membrane fuel cells. Dissertation, RWTH Aachen University, Aachen, Germany (2017)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…