Eumann, M.; Palm, M.; Sauthoff, G.: Iron-rich iron-aluminium-molybdenum alloys with strengthening intermetallic mu phase and R phase precipitates. Steel Research International 75 (1), pp. 62 - 73 (2004)
Herrmann, J.; Inden, G.; Sauthoff, G.: Deformation behaviour of iron-rich iron-aluminium alloys with ternary transition metal additions. Steel Research International 75, 5, pp. 339 - 342 (2004)
Herrmann, J.; Inden, G.; Sauthoff, G.: Microstructure and deformation behaviour of iron-rich iron-aluminium alloys with ternary carbon and silicon additions. Steel Research International 75, 5, pp. 343 - 352 (2004)
Löffler, F.; Palm, M.; Sauthoff, G.: Iron-Rich Iron-Titanium-Silicon Alloys with Strengthening Intermetallic Laves Phase Precipitates. steel research international 75 (11), pp. 766 - 772 (2004)
Palm, M.; Sauthoff, G.: Deformation Behaviour and Oxidation Resistance of Single-Phase and Two-Phase L21 Fe–Al–Ti Alloys. Intermetallics 12 (12), pp. 1345 - 1359 (2004)
Risanti, D. D.; Sauthoff, G.: Iron-aluminium-base alloys with strengthening Laves phase for structural applications at high temperatures. Materials Science Forum 475-479, pp. 865 - 868 (2004)
Schneider, A.; Sauthoff, G.: Iron-Aluminium Alloys with Strengthening Carbides and Intermetallic Phases for High-Temperature Applications. Steel Research International 75, 1, pp. 55 - 61 (2004)
Palm, M.; Preuhs, J.; Sauthoff, G.: Production scale processing of a new intermetallic NiAl-Ta-Cr alloy for high-temperature application: Part II. Powder metallurgical production of bolts by hot isostatic pressing. Journal of Materials Processing Technology 136 (1-3), pp. 114 - 119 (2003)
Palm, M.; Preuhs, J.; Sauthoff, G.: Production-scale processing of a new intermetallic NiAl-Ta-Cr alloy for high-temperature application: Part I. Production of master alloy remelt ingots and investment casting of combustor liner model panels. Journal of Materials Processing Technology 136 (1-3), pp. 105 - 113 (2003)
Palm, M.; Zhang, L.; Stein, F.; Sauthoff, G.: Phases and phase equilibria in the Al-rich part of the Al–Ti system above 900 °C. Intermetallics 10 (6), pp. 523 - 540 (2002)
von Keitz, A.; Sauthoff, G.: Laves phases for high temperatures - Part II: Stability and mechanical properties. Intermetallics 10, pp. 497 - 510 (2002)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.