Eumann, M.; Palm, M.; Sauthoff, G.: Iron-rich iron-aluminium-molybdenum alloys with strengthening intermetallic mu phase and R phase precipitates. Steel Research International 75 (1), pp. 62 - 73 (2004)
Herrmann, J.; Inden, G.; Sauthoff, G.: Deformation behaviour of iron-rich iron-aluminium alloys with ternary transition metal additions. Steel Research International 75, 5, pp. 339 - 342 (2004)
Herrmann, J.; Inden, G.; Sauthoff, G.: Microstructure and deformation behaviour of iron-rich iron-aluminium alloys with ternary carbon and silicon additions. Steel Research International 75, 5, pp. 343 - 352 (2004)
Löffler, F.; Palm, M.; Sauthoff, G.: Iron-Rich Iron-Titanium-Silicon Alloys with Strengthening Intermetallic Laves Phase Precipitates. steel research international 75 (11), pp. 766 - 772 (2004)
Palm, M.; Sauthoff, G.: Deformation Behaviour and Oxidation Resistance of Single-Phase and Two-Phase L21 Fe–Al–Ti Alloys. Intermetallics 12 (12), pp. 1345 - 1359 (2004)
Risanti, D. D.; Sauthoff, G.: Iron-aluminium-base alloys with strengthening Laves phase for structural applications at high temperatures. Materials Science Forum 475-479, pp. 865 - 868 (2004)
Schneider, A.; Sauthoff, G.: Iron-Aluminium Alloys with Strengthening Carbides and Intermetallic Phases for High-Temperature Applications. Steel Research International 75, 1, pp. 55 - 61 (2004)
Palm, M.; Preuhs, J.; Sauthoff, G.: Production scale processing of a new intermetallic NiAl-Ta-Cr alloy for high-temperature application: Part II. Powder metallurgical production of bolts by hot isostatic pressing. Journal of Materials Processing Technology 136 (1-3), pp. 114 - 119 (2003)
Palm, M.; Preuhs, J.; Sauthoff, G.: Production-scale processing of a new intermetallic NiAl-Ta-Cr alloy for high-temperature application: Part I. Production of master alloy remelt ingots and investment casting of combustor liner model panels. Journal of Materials Processing Technology 136 (1-3), pp. 105 - 113 (2003)
Palm, M.; Zhang, L.; Stein, F.; Sauthoff, G.: Phases and phase equilibria in the Al-rich part of the Al–Ti system above 900 °C. Intermetallics 10 (6), pp. 523 - 540 (2002)
von Keitz, A.; Sauthoff, G.: Laves phases for high temperatures - Part II: Stability and mechanical properties. Intermetallics 10, pp. 497 - 510 (2002)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…