Zhu, L.-F.; Grabowski, B.; Neugebauer, J.: Efficient approach to compute melting properties fully from ab initio with application to Cu. MPIE-ICAMS workshop, Ebernburg, Germany (2017)
Grabowski, B.: Data driven engineering of advanced materials: Combining high precision and scale bridging. Colloquium at Forschungszentrum Jülich, Jülich, Germany (2017)
Grabowski, B.: Development and application of quantum mechanics based simulation tools for the design of modern metallic materials. Seminar at RWTH Aachen, Aachen, Germany (2017)
Grabowski, B.: Discovery of an ordered hexagonal superstructure in an Al–Hf–Sc–Ti–Zr high entropy alloy. Seminar at University of Münster, Münster, Germany (2016)
Grabowski, B.: Discovery of an orderered hexagonal superstructure in an Al–Hf–Sc–Ti–Zr high entropy alloy. Seminar, Universität Münster, Münster, Germany (2016)
Zhu, L.-F.; Grabowski, B.; Neugebauer, J.: Development of methodologies to efficiently compute melting properties fully from ab initio. 2nd German-Dutch Workshop on Computational Materials Science, Domburg, The Netherlands (2016)
Grabowski, B.: Entwicklung von quantenmechanischen Simulationsmethoden für das Design moderner metallischer Werkstoffe. Seminar at University Paderborn, Paderborn, Germany (2016)
Grabowski, B.: Entwicklung von quantenmechanischen Simulationsmethoden für das Design moderner metallischer Werkstoffe. Seminar at Universität Paderborn, Paderborn, Germany (2016)
Körmann, F.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Lattice excitations in magnetic alloys: Recent advances in ab initio modeling of coupled spin and atomic fluctuations. TMS Annual Meeting 2016, Nashville, TN, USA (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…