Enax, J.; Prymak, O.; Fabritius, H.-O.; Raabe, D.; Epple, M.: New approaches towards synthetic bio-inspired dental materials based on the characteristics of shark teeth. 9. Zsigmondy-Kolloquium der Kolloid-Gesellschaft, Essen, Germany (2013)
Enax, J.; Prymak, O.; Fabritius, H.-O.; Raabe, D.; Epple, M.: Korrelation von Strukturhierarchie, chemischer Zusammensetzung und mechanischen Eigenschaften von Haizähnen. Jahrestagung der Deutschen Gesellschaft für Biomaterialien, Hamburg, Germany (2012)
Stein, F.; Palm, M.; Voß, S.; He, C.; Dovbenko, O. I.; Prymak, O.: Experimental Investigations of Phases, Phase Equilibria, and Melting Behaviour in the Systems Fe–Al–Nb and Co–Al–Nb and Their Terminal Binary Systems. Calphad XL, Rio de Janeiro, Brazil (2011)
Stein, F.; Prymak, O.: Experimental Investigation of Phases and Phase Equilibria in the Ternary Fe–Al–Nb System. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Prague, Czech Republic (2009)
Stein, F.; Prymak, O.; Dovbenko, O. I.; He, C.; Palm, M.; Schuster, J. C.: Investigation of Phase Diagrams of Laves Phase Containing Binary and Ternary Nb–TM(–Al) Systems with TM=Cr,Fe,Co. 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and Their Applications to Solidification, Kornelimünster, Aachen, Germany (2009)
Prymak, O.; Stein, F.: Composition dependence of site occupancy and c/a ratio in hexagonal C14 Laves phase of the Nb–Cr–Al system. TOFA Thermodynamics of Alloys 2008, Krakow, Poland (2008)
Stein, F.; Prymak, O.; Dovbenko, O. I.; Palm, M.: Phase equilibria of Laves phases in ternary Nb–X–Al systems with X = Cr, Fe, Co. Discussion Meeting on Thermodynamics of Alloys - TOFA 2008, Krakow, Poland (2008)
Prymak, O.; Stein, F.; Frommeyer, G.; Raabe, D.: Phase equilibria in the Nb–Cr–Al system at 1150, 1300 and 1450 °C. Workshop "The Nature of Laves Phases IX", Stuttgart, Germany (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.