Dick, A.; Körmann, F.; Hickel, T.; Neugebauer, J.: Thermodynamic properties of cementite including magnetic, vibronic, and electronic excitations from ab initio. TMS Annual meeting 2012, Orlando, FL, USA (2012)
Hickel, T.: Advancing ab initio methods to finite temperatures: The opening of new routes in materials design. Physikalisches Kolloquium der Ruhr-Universität Bochum, Bochum, Germany (2012)
Hickel, T.; Sandschneider, N.; Friák, M.; Neugebauer, J.; Ouyang, Y.: Ab initio determination of point defects and derived diffusion properties in metals. TMS Annual meeting 2012, Orlando, FL, USA (2012)
Liot, F.; Friák, M.; Hickel, T.; Neugebauer, J.: The influence of ternary additions in the Fe2Nb C14 Laves phase. ICAMS Advanced Discussions, Bochum, Germany (2012)
Palumbo, M.; Fries, S. G.; Hammerschmidt, T.; Drautz, R.; Körmann, F.; Hickel, T.; Neugebauer, J.: SAPIENS, a DFT and experimental based thermophysical database for pure elements. DPG Frühjahrstagung 2012, Berlin, Germany (2012)
Grabowski, B.; Söderlind, P.; Hickel, T.; Neugebauer, J.: Ab Initio Thermodynamics of the fcc-bcc Transition in Ca Including All Relevant FiniteTemperature Excitation Mechanisms. TMS 2012, Orlando, FL, USA (2012)
Nazarov, R.; Hickel, T.; Neugebauer, J.: Accelerated self-diffusion in fcc metals due to H induced superabundant vacancies. TMS 2012 Meeting, Orlando, FL, USA (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.