Raabe, D.: Textures and Micromechanics in Experiment and Theory on Metals and Semi-Crystalline Polymers. Joint Colloquium of the University of Vienna and Technical University of Vienna, Vienna (2004)
Raabe, D.: Simulations and Experiments on Micromechanics in Metals and Polymers. Colloquium lecture at the Department for Theoretical Physics, University of Paderborn (2004)
Konrad, J.; Raabe, D.; Zaefferer, S.: Texturentwicklung beim Warmwalzen und bei der Rekristallisation von Fe3Al-Basislegierungen. Sitzung des DFG Fachausschuss Intermetallische Phasen, MPIE, Düsseldorf, Germany (2004)
Konrad, J.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Texturentwicklung beim Warmwalzen und bei der Rekristallisation von Fe3Al-Basislegierungen. Treffen des Fachausschusses Intermetallische Phasen, MPI Eisenforschung, Düsseldorf (2004)
Roters, F.; Ma, A.; Raabe, D.: The Texture Component Crystal Plasticity Finite Element Method. Keynote lecture at the Third GAMM (Society for Mathematics and Mechanics) Seminar on Microstructures, Stuttgart, Germany (2004)
Raabe, D.: Metallkundliche Ursachen und mechanische Auswirkungen unvollständiger Rekristallisation. Werkstoffausschuß des Vereins Deutscher Eisenhüttenleute, VDEh, Düsseldorf, German (2004)
Raabe, D.: Polycrystal Mechanics of Metals and Polymers - Experiments and Theory. Colloquium Lecture at the Massachusetts Institute of Technology, Cambridge, USA (2003)
Wang, Y.; Roters, F.; Raabe, D.: Simulation of Texture and Anisotropy during Metal Forming with Respect to Scaling Aspects. 1st Colloquium Process Scaling, Bremen, Germany (2003)
Raabe, D.: Simulation of Texture and Anisotropy during Metal Forming with Respect to Scaling Aspects. Lecture at the 1st Colloquium on Process Scaling, Bremen (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…