Ram, F.; Zaefferer, S.; Jäpel, T.: Error Analysis of the Crystal Orientations and Misorientations obtained by the Classical Electron Backscatter Diffraction Method. RMS EBSD 2014, London, UK (2014)
Ram, F.; Zaefferer, S.; Jäpel, T.: On the accuracy and precision of orientations obtained by the conventional automated EBSD method. RMS EBSD 2014, London, UK (2014)
Ram, F.; Zaefferer, S.: Kikuchi Bandlet Method: A Method to Resolve the Source Point Position of an EBSD Pattern. 15th European Microscopy Congress (EMC), Manchester, UK (2012)
Ram, F.; Zaefferer, S.: 3D-observations and modeling of nucleation during recrystallisation in a heavily deformed Fe-Ni alloy. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Ram, F.: The Kikuchi bandlet method for the intensity analysis of the Electron Backscatter Kikuchi Diffraction Patterns. Dissertation, RWTH Aachen, Aachen, Germany (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
Grain boundaries are one of the most prominent defects in engineering materials separating different crystallites, which determine their strength, corrosion resistance and failure. Typically, these interfaces are regarded as quasi two-dimensional defects and controlling their properties remains one of the most challenging tasks in materials…
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…