Weber, F.; Schestakow, I.; Roters, F.; Raabe, D.: Texture Evolution During Bending of a Single Crystal Copper Nanowire Studied by EBSD and Crystal Plasticity Finite Element Simulations. Advanced Engineering Materials 10 (8), pp. 737 - 741 (2008)
Weber, F.; Schestakow, I.; Raabe, D.; Roters, F.: Investigation of texture and microstructure in a bent monocrystalline Cu-nanowire using EBSD and crystal plasticity finite element simulations. 7th GAMM Seminar on Microstructures, Bochum, Germany (2008)
Weber, F.: Metallphysikalische Untersuchungen der Platizität von Einkristallen in mikroskopischen Dimensionen unter Verwendung von FEM Simulation. Bachelor, FH Düsseldorf, Düsseldorf [Germany] (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.