de la Fuente, D.; Rohwerder, M.: Fundamental investigation on the stability of the steel/coating interfaces contaminated by submicroscopic salt particles. Progress in Organic Coatings 61 (2-4), pp. 233 - 239 (2008)
Hausbrand, R.; Stratmann, M.; Rohwerder, M.: The physical meaning of electrode potentials at metal surfaces and polymer/metal interfaces: Consequences for delamination. Journal of the Electrochemical Society 155 (7), pp. C369 - C379 (2008)
Rohwerder, M.; Michalik, A.: Conducting polymers for corrosion protection: What makes the difference between failure and success? Electrochimica Acta 53 (3 SPEC. ISS.), pp. 1301 - 1314 (2007)
Zhong, Q.; Rohwerder, M.; Shi, L.: The effect of ionic penetration on semiconducting behaviour of temporarily protective oil coating on the surface of AISI stainless steel. Materials and Corrosion-Werkstoffe und Korrosion 56 (9), pp. 597 - 605 (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.