Lymperakis, L.; Neugebauer, J.: The role of strain fields, core structure, and native defects on the electrical activity of dislocations in GaN. The 6th International Conference on Nitride Semiconductors, Bremen (2005)
Ismer, L.; Ireta, J.; Neugebauer, J.; Scheffler, M.: A DFT-GGA based thermodynamic analysis of the secondary structure of proteins. DPG-Jahrestagung, Berlin, Germany (2005)
Wahn, M.; Neugebauer, J.: Generalized Wannier functions: An accurate and efficient way to construct ab-initio tight-binding orbitals. DPG-Tagung, Berlin, Germany (2005)
Lymperakis, L.; Neugebauer, J.: Formation of steps and vicinal surfaces on GaN (0001) surfaces: Implications on surface morphologies and surface roughening. DPG spring meeting, Berlin, Germany (2005)
Neugebauer, J.: Ab initio Multiskalensimulationen zu Defekten und zum Wachstum von breitlückigen Halbleitern. SiC-Kolloquium, Universität Erlangen-Nürnberg (2005)
Schwarz, T.; Yang, J.; Aota, L. S.; Woods, E.; Zhou, X.; Neugebauer, J.; Todorova, M.; McCaroll, I.; Gault, B.: Analysis of the reactive solid-liquid interface during the corrosion of magnesium at the near atomic level using cryo-atom probe tomography. Aqueous Corrosion Gordon Research Conference (GRC) 2024, Corrosion Challenges and Opportunities for the Energy Transition, New London, CT, USA (2024)
Schwarz, T.; Yang, J.; Aota, L. S.; Woods, E.; Zhou, X.; Neugebauer, J.; Todorova, M.; McCaroll, I.; Gault, B.: Analysis of the reactive solid-liquid interface during the corrosion of magnesium at the near atomic level using cryo-atom probe tomography. Aqueous Corrosion Gordon Research Seminar (GRS) 2024, Corrosion Monitoring, Modelling and Mitigation Towards a Sustainable Future, New London, CT, USA (2024)
Zhu, L.-F.; Neugebauer, J.; Grabowski, B.: A computationally highly efficient ab initio approach for melting property calculations and practical applications. CALPHAD 2024, Mannheim, Germany (2024)
Surendralal, S.; Todorova, M.; Finnis, M. W.; Neugebauer, J.: Effect of external electric fields on the Mg(0001)/H2O interface studied by empirical potentials using automated tools. The electrode potential in electrochemistry workshop - A challenge for electronic structure theory calculations, Castle Reisensburg (Ulm), Germany (2017)
Surendralal, S.; Todorova, M.; Neugebauer, J.: Effect of external electric fields on the Mg(0001)/H2O. High electric Fields in Electrochemistry and in Atom Probe Tomography - Workshop, Ringberg Castle, Tegernsee, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…