Tasan, C. C.: Overcoming challenges in damage engineering: Design of reliable damage quantification methodologies and damage-resistant microstructures. TMS 2015, Orlando, FL, USA (2015)
Tasan, C. C.; Diehl, M.; Yan, D.; Raabe, D.: Coupled high-resolution experiments and crystal plasticity simulations to analyze stress and strain partitioning in multi-phase alloys. TMS2015, Orlando, FL, USA (2015)
Tasan, C. C.; Yan, D.; Raabe, D.: A novel, high-resolution approach for concurrent mapping of micro-strain and micro-structure evolution up to damage nucleation. TMS 2015, Orlando, FL, USA (2015)
Morsdorf, L.; Tasan, C. C.; Ponge, D.; Raabe, D.: Lath martensite transformation, µ-plasticity and tempering reactions: potential TEM aids. Seminar at Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (2015)
Tasan, C. C.: Doing more, with less, for longer:Designing high-performance eco-friendly materials guided by in-situ experiments and simulations. Invited Seminar at the Dept. of Mat. Sci. and Eng. of MIT, Boston, MA, USA (2015)
Tasan, C. C.: Investigating Stress - Strain Partitioning in Nanostructured Multi-phase Alloys by Coupled Experiments and Simulations. 3rd World Congress on Integrated Computational Materials Engineering, Colorado Springs, CO, USA (2015)
Tasan, C. C.: Doing more, with less, for longer: Designing high-performance eco-friendly materials guided by in-situ experiments and simulations. Invited Seminar at the Dept. of Mat. Sci. and Eng. of MIT, Boston, MA, USA (2015)
Tasan, C. C.; Morsdorf, L.: In-situ characterization of martensite plasticity by high resolution microstructure and strain mapping. ICM12, Karlsruhe, Germany (2015)
Diehl, M.; Shanthraj, P.; Roters, F.; Tasan, C. C.; Raabe, D.: A Virtual Laboratory to Derive Mechanical Properties. M2i Conference "High Tech Materials: your world - our business"
, Sint Michielgestel, The Netherlands (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.