Raabe, D.: Metastable Nanostructured Metallic Alloy. The KAIST Lecture in Materials Science and Engineering 2019, Korea Advanced Institute of Science and Technology KAIST, Daejeon, Korea (2019)
Raabe, D.: Atomic-Scale Analysis of Chemistry at Lattice Defects. The KAIST Lecture in Materials Science and Engineering 2019, Korea Advanced Institute of Science and Technology KAIST, Daejeon, Korea (2019)
Su, J.; Raabe, D.; Li, Z.: On the mechanism of displacive phase transformation in metastable high entropy alloys. DPG Regensburg 2019, Regensburg, Germany (2019)
Raabe, D.: Compositional Lattice Defect Manipulation for Microstructure Design. The Bauerman Lecture 2019, Department of Materials, Imperial College London, Royal School of Mines, London, UK (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…