Jägle, E. A.: Metallische Werkstoffe in der Additiven Fertigung. Workshop "Steels for Additive Manufacturing", Stahlinstitut,VDEh, Düsseldorf, Düsseldorf, Germany (2017)
Jägle, E. A.: Phase transformation phenomena in additively produced alloys. Seminar Materials Science and Technology, Ruhr-Universität Bochum, Bochum, Germany (2017)
Jägle, E. A.: Phase transformation phenomena in additively produced alloys. Werkstoffkolloquium 2016, Deutsches Zentrum für Luft- und Raumfahrt Köln, Köln, Germany (2016)
Jägle, E. A.: Phase transformations in alloys produced by Laser Additive Manufacturing. Spezialseminar Fakultät für Werkstoffwissenschaft und Werkstofftechnologie, TU Bergakademie Freiberg, Freiberg, Germany (2016)
Jägle, E. A.: Solidification cracking during Selective Laser Melting of Inconel 738LC: origins and remedy. Multiscale Materials Modelling conference, Dijon, France (2016)
Kürnsteiner, P.; Wilms, M. B.; Weisheit, A.; Jägle, E. A.; Raabe, D.: Precipitation Reaction in a Maraging Steel during Laser Additive Manufacturing triggered by Intrinsic Heat Treatment. Materials Science and Engineering Congress, Darmstadt, Germany (2016)
Jägle, E. A.: Small variations in powder composition lead to strong differences in part properties. Alloys for Additive Manufacturing Workshop 2016, Düsseldorf, Germany (2016)
Jägle, E. A.: Alloys for Laser Additive Manufacturing: general considerations and precipitation reactions. Seminar at Institut für Werkstoff-Forschung, DLR Köln 2016, Köln, Germany (2016)
Jägle, E. A.: Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing. Seminar at EMPA (Eidgenössische Materialprüfungs- und Forschungsanstalt), Dübendorf, Switzerland (2016)
Jägle, E. A.: Alloys for and by Laser Additive Manufacturing – the basic research perspective. 2nd European Scientific Steel Panel – Metal Additive Manufacturing, Steel Institute VdEH, Düsseldorf, Germany (2015)
Jägle, E. A.: Maraging steel produced by LAM: Influence of processing on precipitation and austenite reversion. Phase Transformations in Inorganic Materials (PTM), Whistler, BC, Canada (2015)
Jägle, E. A.; Tytko, D.; Choi, P.-P.; Raabe, D.: Deformation-induced intermixing in a model multilayer system. Atom Probe Tomography & Microscopy 2014, Stuttgart, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…