Dehm, G.: Atomic resolution interface study of VN and Cu films on MgO using Cs corrected TEM. Microscopy Conference MC 2013, Regensburg, Germany (2013)
Dehm, G.: Struktur und Nano-/Mikromechanik von Materialien. Vorstandssitzung des Stahlinstituts VDEh und der Wirtschaftsvereinigung Stahl, Düsseldorf, Germany (2013)
Kirchlechner, C.; Liegl, W.; Motz, C.; Dehm, G.: X-ray μLaue: A novel view on fatigue damage at the micron scale. ECI on Nanomechanical Testing 2013, Olhão (Algarve), Portugal (2013)
Kirchlechner, C.; Motz, C.; Dehm, G.: A novel view on fatigue damage at the micron scale by X-ray µLaue diffraction. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Marx, V. M.; Kirchlechner, C.; Cordill, M. J.; Dehm, G.: Deformation behavior of a Cr interlayer buried under Cu films on polyimide. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Dehm, G.: Prospects and experimental constraints of nano/micro-mechanical testing in materials science. GDRiCNRSMecano General Meeting, Ecole des Mines, Paris, France (2012)
Rashkova, B.; Moser, G.; Felber, H.; Grosinger, W.; Zhang, Z.; Motz, C.; Dehm, G.: A Novel Preparation Route to Obtain Micro-Bending Beams for In-situ TEM Studies. 9th Multinational Microscopy Conference 2009, Institute for Electron Microscopy Graz University of Technology , Graz, Austria (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…