Stein, F.; Vogel, S. C.; Eumann, M.; Palm, M.: Determination of the crystal structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. Intermetallics 18 (1), pp. 150 - 156 (2010)
Krein, R.; Palm, M.; Heilmaier, M.: Characterization of microstructures, mechanical properties, and oxidation behavior of coherent A2 + L21 Fe–Al–Ti. Journal of Materials Research 24 (11), pp. 3412 - 3421 (2009)
Palm, M.: Phase equilibria in the Fe corner of the Fe–Al–Nb system between 800 and 1150°C. Journal of Alloys and Compounds 475 (1-2), pp. 173 - 177 (2009)
Palm, M.: Fe–Al materials for structural applications at high temperatures: Current research at MPIE. International Journal of Materials Research 100 (3), pp. 277 - 287 (2009)
Eumann, M.; Sauthoff, G.; Palm, M.: Phase equilibria in the Fe–Al–Mo system - Part II: Isothermal sections at 1000 and 1150 °C. Intermetallics 16 (6), pp. 834 - 846 (2008)
Krein, R.; Palm, M.: The influence of Cr and B additions on the mechanical properties and oxidation behaviour of L21-ordered Fe-Al-Ti-based alloys at high temperatures. Acta Materialia 56 (10), pp. 2400 - 2405 (2008)
Eumann, M.; Sauthoff, G.; Palm, M.: Phase equilibria in the Fe–Al–Mo system - Part I: Stability of the Laves phase Fe2Mo and isothermal section at 800 °C. Intermetallics 16 (5), pp. 706 - 716 (2008)
Stein, F.; Palm, M.: Re-determination of transition temperatures in the Fe–Al system by differential thermal analysis. International Journal of Materials Research 98 (7), pp. 580 - 588 (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.