Kanjilal, A.; Rehman, U.; Best, J. P.; Dehm, G.: Role of temperature on micromechanical fracture behavior of Laves phase in Mg–Al–Ca ternary alloy. FEMS Euromat 2023, Frankfurt am Main, Germany (2023)
Brink, T.; Langenohl, L.; Ahmad, S.; Liebscher, C.; Dehm, G.: Atomistic Modeling of the Thermodynamics of Grain Boundaries in fcc Metals. 19th International Conference on Diffusion in Solids and Liquids, Crete, Greece (2023)
Dehm, G.: Grain boundary phases in metallic materials: Structure, stability and properties. MiFuN III - Microstructural Functionality at the Nanoscale, Venice, Italy (2023)
Dehm, G.: On the interplay between grain boundary complexions and chemical composition for fcc metals. Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2023, Bernkastel-Kues, Germany (2023)
Brink, T.; Bhat, M. K.; Best, J. P.; Dehm, G.: Grain-boundary segregation effects on bicrystal Cu pillar compression. DPG Spring Meeting, Dresden, Germany (2023)
Kanjilal, A.; Rehman, U.; Best, J. P.; Dehm, G.: Microscale fracture behavior of Laves phases in the Mg–Ca–Al ternary alloy system. 86. Annual Meeting of DPG and DPG-Frühjahrstagung (DPG Spring Meeting) of the Matter and Cosmos Section (SMuK), Dresden, Germany (2023)
Kanjilal, A.; Rehman, U.; Best, J. P.; Dehm, G.: Microscale fracture behavior of Laves phases in the Mg–Ca–Al ternary alloy system. DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM), Dresden, Germany (2023)
Pemma, S.; Janisch, R.; Dehm, G.; Brink, T.: Deformation mechanism of complexions in a Cu grain boundary under shear. FEMS EUROMAT 2023, Frankfurt am Main, Germany (2023)
Pemma, S.; Janisch, R.; Dehm, G.; Brink, T.: Disconnection activation in complexions of a Cu grain boundary under shear. 19th International Conference on Diffusion in Solids and Liquids (DSL-2023), Heraklion, Greece (2023)
Brognara, A.; Best, J. P.; Djemia, P.; Faurie, D.; Dehm, G.; Ghidelli, M.: Effect of composition and nanolayering on mechanical properties of Zr100-xCux thin film metallic glasses. Talk at Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…