Frommeyer, G.; Jiménez, J. A.: Structural Superplasticity at Higher Strain Rates of Hypereutectoid Fe-5.5Al-1Sn-1Cr-1.3C Steel. Metallurgical and Materials Transaction 36 A, pp. 295 - 300 (2005)
Gnauk, J.; Wenke, R.; Frommeyer, G.: Macroscopic modeling of solidification processes by performing the generalized enthalpy method. Materials Science and Engineering: A 413-414, pp. 490 - 496 (2005)
Jiménez, J. A.; Carsi, M.; Frommeyer, G.; Knippscheer, S.; Wittig, J.; Ruano, O. A.: The effect of microstructure on the creep behavior of the ti-46al-1Mo-0.2Si alloy. Intermetallics 13, pp. 1021 - 1029 (2005)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Materials Science and Engineering A 387–389, pp. 950 - 954 (2004)
Deges, J.; Fischer, R.; Frommeyer, G.; Schneider, A.: Atom probe field ion microscopy investigations on the intermetallic Ni49.5Al49.5Re1 alloy. Surface and Interface Analysis 36, pp. 533 - 539 (2004)
Rablbauer, R.; Fischer, R.; Frommeyer, G.: Mechnical properties of NiAl–Cr alloys in relation to microstructure and atomic defects. Zeitschrift für Metallkunde 95 (6), pp. 525 - 534 (2004)
Fischer, R.; Frommeyer, G.; Schneider, A.: APFIM investigations on site preferences, superdislocations, and antiphase boundaries in NiAl(Cr) with B2 superlattice structure. Materials Science and Engineering A 353, pp. 87 - 91 (2003)
Frommeyer, G.; Brüx, U.; Neumann, P.: Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes. Iron and Steel Institue of Japan International Vol. 43 (3), pp. 438 - 446 (2003)
Frommeyer, G.; Hofmann, H.; Löhr, J.: Structural Superplasticity at High Strain Rates of Super Duplex Stainless Steel Fe-25Cr-7Ni-3Mo-0.3N. Steel Research 74 (5), pp. 338 - 344 (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…