Zhu, L.-F.; Grabowski, B.; Neugebauer, J.: Efficient approach to compute melting properties fully from ab initio with application to Cu. MPIE-ICAMS workshop, Ebernburg, Germany (2017)
Grabowski, B.: Data driven engineering of advanced materials: Combining high precision and scale bridging. Colloquium at Forschungszentrum Jülich, Jülich, Germany (2017)
Grabowski, B.: Development and application of quantum mechanics based simulation tools for the design of modern metallic materials. Seminar at RWTH Aachen, Aachen, Germany (2017)
Grabowski, B.: Discovery of an ordered hexagonal superstructure in an Al–Hf–Sc–Ti–Zr high entropy alloy. Seminar at University of Münster, Münster, Germany (2016)
Grabowski, B.: Discovery of an orderered hexagonal superstructure in an Al–Hf–Sc–Ti–Zr high entropy alloy. Seminar, Universität Münster, Münster, Germany (2016)
Zhu, L.-F.; Grabowski, B.; Neugebauer, J.: Development of methodologies to efficiently compute melting properties fully from ab initio. 2nd German-Dutch Workshop on Computational Materials Science, Domburg, The Netherlands (2016)
Grabowski, B.: Entwicklung von quantenmechanischen Simulationsmethoden für das Design moderner metallischer Werkstoffe. Seminar at University Paderborn, Paderborn, Germany (2016)
Grabowski, B.: Entwicklung von quantenmechanischen Simulationsmethoden für das Design moderner metallischer Werkstoffe. Seminar at Universität Paderborn, Paderborn, Germany (2016)
Körmann, F.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Lattice excitations in magnetic alloys: Recent advances in ab initio modeling of coupled spin and atomic fluctuations. TMS Annual Meeting 2016, Nashville, TN, USA (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…