Winning, M.: 3D EBSD measurements in ultra fine grained Cu 0.17wt% Zr obtained from ECAP. Seminar talk, Carnegie Mellon University, Pittsburgh, PA, USA (2008)
Khorashadizadeh, A.; Raabe, D.; Winning, M.: Three-dimensional tomographic EBSD measurements of the crystal topology in heavily deformed ultra fine grained pure Cu and Cu–0.17wt%Zr obtained from ECAP and HPT. DPG Frühjahrstagung 2008, Berlin, Germany (2008)
Winning, M.: Grain boundary engineering by application of mechanical stresses. The Third International Conference on Recrystallization and Grain Growth, Jeju Island, South Korea (2007)
Winning, M.; Raabe, D.; Brahme, A.: A texture component model for predicting recrystallization textures. The Third International Conference on Recrystallization and Grain Growth, Jeju Island, South Korea (2007)
Winning, M.: Korngrenzen auf Wanderschaft: Wege zum Design metallischer Werkstoffe. Colloquia Academia, Akademie der Wissenschaften und der Literatur, Mainz, Germany (2007)
Winning, M.: Korngrenzen auf Wanderschaft: Wege zum Design metallischer Werkstoffe. Colloquia Academia, Akademie der Wissenschaften und der Literatur, Mainz, Germany (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.