Grabowski, B.; Ismer, L.; Hickel, T.; Neugebauer, J.: Ab initio concepts for an efficient and accurate determination of thermodynamic properties up to the melting point. Calphad XXXIX, Jeju Island, South Korea (2010)
Grabowski, B.; Ismer, L.; Hickel, T.; Neugebauer, J.: Computing Ab Initio Free Energy Contributions of Point Defects. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Towards a First-Principles Understanding of the Iron Phase Diagram. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Ab initio determination of the magnetic free energy contribution of metallic systems. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Grabowski, B.; Ismer, L.; Hickel, T.; Neugebauer, J.: Ab initio up to the melting point: Efficient sampling strategies of anharmonic free energies. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Grabowski, B.: Towards ab initio assisted materials design: DFT based thermodynamics up to the melting point. PhD-Defense at University of Paderborn, Paderborn, Germany (2009)
Hickel, T.; Grabowski, B.; Körmann, F.; Dick, A.; Neugebauer, J.: The accuracy of first principles methods inpredicting thermodynamic properties of metals. XVIII International Material Research Conference, Cancun, Mexico (2009)
Grabowski, B.: Ab initio investigation of temperature-driven martensitic transformations: Case study for alkali earth metals. DFG-Nachwuchsakademie Begutachtung, Bonn, Germany (2009)
Neugebauer, J.; Grabowski, B.; Körmann, F.; Dick, A.; Hickel, T.: Ab Initio Thermodynamics: Status, applications and challenges. The second Sino-German Symposium on “Computational Thermodynamics and Kinetics and Their Applications to Solidification”, Kornelimünster/Aachen, Germany (2009)
Hickel, T.; Uijttewaal, M.; Grabowski, B.; Neugebauer, J.: First principles determination of phase transitions in magnetic shape memory alloys. 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and their Application to Solidification, Aachen, Germany (2009)
Hickel, T.; Grabowski, B.; Ismer, L.; Neugebauer, J.: Role of Atomistic Simulations in the Prediction of Thermodynamic Properties of Materials. Workshop on Multi-Scale Computational Materials Design of Structural Materials, POSCO international center, Pohang, South Korea (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…