Stein, F.; Sauthoff, G.; Palm, M.: Experimental Determination of the Ternary Fe–Al–Zr Phase Diagram. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Düsseldorf, Germany (2004)
Palm, M.; Sauthoff, G.: Manufacturing and Testing of a Novel Advanced NiAl-Base Alloy for Gas Turbine Applications. Materials for Advanced Power Engineering 2002 (Proc. 7th Liège Conference), Liege (2002)
Ducher, R.; Lacaze, J. C.; Stein, F.; Palm, M.: Experimental Study of the Liquidus Surface of the Al–Fe–Ti System. Thermodynamics of Alloys - TOFA 2002, Univerità degli Studi di Roma “La Sapienza”, Rome, Italy (2002)
Ducher, R.; Stein, F.; Palm, M.; Lacaze, J. C.: Nouvelle évaluation de la surface de liquidus du système ternaire Ti–Al–Fe. CPR “Intermetalliques base titane”, Seminar “Alliages TiAl”, Aspet, Haute-Garonne, France (2002)
Stein, F.; Palm, M.; Sauthoff, G.: New results on intermetallic phases, phase equilibria, and phase transformation temperatures in the Fe–Zr system. Materials Week 2000, München, Germany (2000)
Eumann, M.; Palm, M.; Sauthoff, G.: Constitution, Microstructure and Mechanical Properties of Ternary Fe–Al–Mo Alloys. EUROMAT 99, Munich, Germany (1999)
Palm, M.; Stein, F.: Phase Equilibria in the Al-rich part of the Al–Ti system. 2nd International Symposium on Gamma Titanium Aluminides, TMS Annual Meeting, San Diego, CA, USA (1999)
Palm, M.; Gorzel, A. H.; Letzig, D.; Sauthoff, G.: Structure and Mechanical Properties of Ti–Al–Fe Alloys at Ambient and High Temperatures. Structural Intermetallics 1997, Seven Springs, PA, USA (1997)
Palm, M.; Kainuma, R.; Inden, G.: Reinvestigation of Phase Equilibria in the Ti-rich Part of the Ti–Al System. Journées d´Automne 1996, Paris, France (1996)
Kainuma, R.; Palm, M.; Inden, G.: Experimentelle Untersuchungen der Hochtemperaturgleichgewichte im System Ti–Al. DGM Hauptversammlung 1993, Friedrichshafen, Germany (1993)
Palm, M.: Phase Equilibria and Phase Diagrams. Lecture: 4th MSIT Winter School on Materials Chemistry, Castle Ringberg, Tegernsee, February 16, 2020 - February 20, 2020
Palm, M.: Phase diagrams and phase transformations. Lecture: Education Seminar 5th International Workshop on Titanium Aluminides, Tokyo, Japan, August 28, 2016
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…
Recent developments in experimental techniques and computer simulations provided the basis to achieve many of the breakthroughs in understanding materials down to the atomic scale. While extremely powerful, these techniques produce more and more complex data, forcing all departments to develop advanced data management and analysis tools as well as…
Integrated Computational Materials Engineering (ICME) is one of the emerging hot topics in Computational Materials Simulation during the last years. It aims at the integration of simulation tools at different length scales and along the processing chain to predict and optimize final component properties.
Data-rich experiments such as scanning transmission electron microscopy (STEM) provide large amounts of multi-dimensional raw data that encodes, via correlations or hierarchical patterns, much of the underlying materials physics. With modern instrumentation, data generation tends to be faster than human analysis, and the full information content is…