Hariharan, A.; Lu, L.; Risse, J.; Jägle, E. A.; Raabe, D.: Mechanisms Contributing to Solidification Cracking during laser powder bed fusion of Inconel-738LC. Alloys for Additive Manufacturing Symposium 2019 (AAMS2019), Chalmers University of Technology, Gothenburg, Sweden (2019)
Lu, L.: Characterization of the crack formation mechanism in Ni-based superalloy Inconel 738LC produced by Selective Laser Melting (SLM). Master, Institut für Eisenhüttenkunde, RWTH Aachen, Aachen, Germany (2015)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
New product development in the steel industry nowadays requires faster development of the new alloys with increased complexity. Moreover, for these complex new steel grades, it is more challenging to control their properties during the process chain. This leads to more experimental testing, more plant trials and also higher rejections due to…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…