Nikolov, S.; Raabe, D.: Hierarchical Modeling of the Elastistic Properties of Bone at Submicron Scales: The Role of Extrafibrillar Mineralization. Biophysical Journal 94, pp. 4220 - 4232 (2008)
Nikolov, S.; Lebensohn, R. A.; Raabe, D.: Self-consistent modeling of large plastic deformation, texture and morphology evolution in semi-crystalline polymers. Journal of the Mechanics and Physics of Solids 54 (7), pp. 1350 - 1375 (2006)
Nikolov, S.; Han, C. S.; Raabe, D.: On the origin of size effects in small-strain elasticity of solid polymers. International Journal of Solids and Structures 44, pp. 1582 - 1592 (2006)
Han, C. S.; Nikolov, S.: Frank energy and size dependent deformation in polymer. 13th International Symposium on Plasticity and its Current Applications, Alaska [USA], June 02, 2007 - June 06, 2007., (2008)
Nikolov, S.; Sachs, C.; Fabritius, H.; Raabe, D.; Petrov, M.; Friak, M.; Neugebauer, J.; Lymperakis, L.; Ma, D.: Hierarchical modeling of the mechanical properties of lobster cuticle from nano‐ up to macroscale: The influence of the mineral content and the microstructure. In: Proceedings of MMM 2008 "Computational Modeling of biological and soft condensed matter systems", pp. 667 - 670. 4th International Conference on Multiscale Materials Modeling, Tallahassee, FL, USA, October 27, 2008 - October 31, 2008. Dep. of Scientific Computing, Florida State University, USA (2008)
Nikolov, S.; Roters, F.; Raabe, D.: A constitutive model with shear transformation zones plasticity and reptation-based viscoelasticity. 3th Int. Conference Multiscale Materials Modeling 2006, Freiburg, Germany, September 18, 2006 - September 22, 2006. (2006)
Nikolov, S.; Lebensohn, R. A.; Roters, F.; Raabe, D.; Ma, A.: Micromechanical modeling of large plastic deformation in semi-crystalline polymers. 12th International Symposium on Plasticity 2006, Halifax, Nova Scotia (Canada), July 17, 2006 - July 22, 2006. (2006)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The goal of this project is to develop an environmental chamber for mechanical testing setups, which will enable mechanical metrology of different microarchitectures such as micropillars and microlattices, as a function of temperature, humidity and gaseous environment.
Crystal plasticity modelling has gained considerable momentum in the past 20 years [1]. Developing this field from its original mean-field homogenization approach using viscoplastic constitutive hardening rules into an advanced multi-physics continuum field solution strategy requires a long-term initiative. The group “Theory and Simulation” of…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
The project focuses on development and design of workflows, which enable advanced processing and analyses of various data obtained from different field ion emission microscope techniques such as field ion microscope (FIM), atom probe tomography (APT), electronic FIM (e-FIM) and time of flight enabled FIM (tof-FIM).
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.
The development of pyiron started in 2011 in the CM department to foster the implementation, rapid prototyping and application of the highly advanced fully ab initio simulation techniques developed by the department. The pyiron platform bundles the different steps occurring in a typical simulation life cycle in a single software platform and…