Zhang, S.; Yu, Y.; Jung, C.; Mattlat, D. A.; Abdellaoui, L.; Scheu, C.: In situ STEM observation of thermoelectric materials under heating and biasing conditions. The 6th joint Sino-German workshop on advanced & correlative electron microscopy of catalysts, quantum phenomena & soft matter, Bad Honnef, Germany (2024)
Zhang, S.; Yu, Y.; Jung, C.; Wang, Z.; Mattlat, D. A.; Abdellaoui, L.; Scheu, C.: In situ microstructural observation and electrical transport measurements of PbTe thermoelectrics by transmission electron microscopy. International Conference on Thermoelectrics ICT, Krakow, Poland (2024)
Scheu, C.; Zhang, S.: Hematite for light induced water splitting – improving efficiency by tuning distribution of Sn dopants at the atomic scale. The International Symposium on Advanced Coatings for Energy – ISC4E 2023, Ben Guerir, Morocco (2023)
Zhang, S.: Electron microscopy: Resolution and imaging contrast. DMG/DGK-AK9 Summer School “Advanced methods for the characterization of applied materials”, MPI für Kohlenforschung, Mülheim (Ruhr), Germany (2023)
Zhang, S.; Kim, S.-H.; Mingers, A. M.; Gault, B.; Scheu, C.: Operando Study on the activation of hydrogen evolution electrocatalysts. NRF-DFG meeting “Electrodes for direct sea-water splitting and microstructure based stability analyses”, Korean Institute for Energy Research, Daejeon, South Korea (2023)
Jung, C.; Jang, K.; Zhang, S.; Bueno Villoro, R.; Choi, P.-P.; Scheu, C.: Sb-doping induced order to disorder transition enhances the thermal stability of NbCoSn1-xSbx half-Heusler semiconductors. The 20th International Microscopy Congress, PS-07.2. Microscopy of Semiconductor Materials and Devices, Busan, Republic of Korea (2023)
Zhang, S.; Yu, Y.; Jung, C.; Abdellaoui, L.; Scheu, C.: In situ TEM unveils dynamic doping behavior of thermoelectric materials – Microstructure and property evolution under heating and electric biasing. International Microscopy Conference IMC20, Busan, Korea (2023)
Zhang, S.; Kim, S.-H.; Mingers, A. M.; Gault, B.; Scheu, C.: Operando Study on the corrosion of photo-electrocatalysts. NRF-DFG meeting “Electrodes for direct sea-water splitting and microstructure based stability analyses”, Kangwon National University, Chuncheon-si, South Korea (2023)
Zhang, S.: Microstructure design in thermoelectric materials: in situ observation of doping behavior and role of grain boundary phases. Colloqium, Ruhr-Universität Bochum, Bochum, Germany (2023)
Zhang, S.: Microstructure design in thermoelectric materials: Decoupling the transport properties and in situ observation at operation conditions. Colloqium, TU Darmstadt, Darmstadt, Germany (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…