Pizzutilo, E.: Towards On-Site Production of Hydrogen Peroxide with Gold-Palladium catalysts in Electrocatalysis and Heterogeneous Catalysis. Dissertation, Ruhr-Universität Bochum, Bochum, Germany (2017)
Philippi, B.: Micromechanical characterization of lead-free solder and its individual microstructure elements. Dissertation, Fakultät für Maschnenbau, RUB, Bochum, Germany (2016)
Marx, V. M.: The mechanical behavior of thin metallic films on flexible polymer substrate. Dissertation, Ruhr-Universität Bochum, Bochum, Germany (2016)
Imrich, P. J.; Dehm, G.; Clemens, H. J.: TEM Investigations on Interactions of Dislocations with Boundaries. Dissertation, Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef Strasse 18, 8700 Leoben, Austria, Leoben, Austria (2015)
Völker, B.: Investigation of interface properties of barrier metals on dielectric substrates. Dissertation, Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef Strasse 18, 8700, Leoben, Austria (2014)
Wimmer, A. C.: Plasticity and fatigue of miniaturized Cu structures. Dissertation, Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef Strasse 18, 8700, Leoben, Austria (2014)
Wetegrove, M.; Duarte, M. J.; Taube, K.; Rohloff, M.; Gopalan, H.; Scheu, C.; Dehm, G.; Kruth, A.: Preventing Hydrogen Embrittlement: The Role of Barrier Coatings for the Hydrogen Economy, Hydrogen 4 (2 Ed.), pp. 307 - 322 (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.