Raabe, D.: News from the Iron Age – 3D EBSD and fresh Lobster. Anorganisch-Chemisches Kolloquium der Fakultät für Chemie, TU Dresden und Max-Planck-Instituts für Chemische Physik fester Stoffe, Dresden, Germany (2005)
Raabe, D.; Al-Sawalmih, A.; Brokmeier, H. G.; Yi, S. B.: Texture and Smart Anisotropy of the Exoskeleton Tissue of Lobster. MRS Spring Meeting 2005, San Francisco, CA, USA (2005)
Konrad, J.; Raabe, D.; Zaefferer, S.: Investigation of orientation gradients around particles and their influence on particle stimulated nucleation in a hot rolled Fe3Al based alloy by applying 3D EBSD. DPG Frühjahrstagung, Berlin, Germany (2005)
Bastos, A.; Zaefferer, S.; Raabe, D.: Characterization of nanostructured electrodeposited NiCo Samples by use of Electron Backscatter Diffraction (EBSD). MRS Spring Meeting, San Francisco, CA, USA (2005)
Raabe, D.: Kristallmechanik in Metallen und Polymeren. Vom Werkstoffverständnis zum Wettbewerbsvorteil, Fraunhofer Institut für Werkstoffmechanik, Freiburg (2005)
Raabe, D.: Simulationen und Experimente zur Kristallmechanik. Instituts-Kolloquium am Institut für Festkörper- und Werkstoffforschung (IFW), Dresden, Germany (2005)
Roters, F.; Jeon-Haurand, H. S.; Raabe, D.: A texture evolution study using the Texture Component Crystal Plasticity FEM. Plasticity 2005, Kauai, USA (2005)
Raabe, D.: The role of texture and anisotropy in nano- and microscale materials mechanics. Keynote lecture at the Plasticity Conference 2004/2005, Hawai, USA (2005)
Raabe, D.: Using the Lattice Boltzmann Method for Multiscale Modeling in Materials Science and Engineering. Lecture at the Plasticity Conference 2004/2005, Hawai, USA (2005)
Raabe, D.; Romano, P.; Al-Sawalmih, A.; Sachs, C.; Servos, G.; Hartwig, H. G.: Microstructure and Mesostructure of the exoskeleton of the lobster homarus americanus. MRS Spring Meeting, San Francisco, CA, USA (2005)
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
In this project we pursue recent developments in the field of austenitic steels with up to 18% reduced mass density. The alloys are based on the Fe-Mn-Al-C system.
Magnetic properties of magnetocaloric materials is of utmost importance for their functional applications. In this project, we study the magnetic properties of different materials with the final goal to discover new magnetocaloric materials more suited for practical applications.
In this project, we work on the use of a combinatorial experimental approach to design advanced multicomponent multi-functional alloys with rapid alloy prototyping. We use rapid alloy prototyping to investigate five multicomponent Invar alloys with 5 at.% addition of Al, Cr, Cu, Mn and Si to a super Invar alloy (Fe63Ni32Co5; at.%), respectively…
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
In this project we study a new strategy for the theory-guided bottom up design of beta-Ti alloys for biomedical applications using a quantum mechanical approach in conjunction with experiments. Parameter-free density functional theory calculations are used to provide theoretical guidance in selecting and optimizing Ti-based alloys...
Local lattice distortion is one of the core effects in complex concentrated alloys (CCAs). It has been expected that the strength CCAs can be improved by inducing larger local lattice distortions. In collaboration with experimentalists, we demonstrated that VCoNi has larger local lattice distortions and indeed has much better strength than the…
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…