Hodnik, N.; Dehm, G.; Mayrhofer, K. J. J.: Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research. Accounts of Chemical Research 49 (9), pp. 2015 - 2022 (2016)
Cherevko, S.; Geiger, S.; Kasian, O.; Mingers, A. M.; Mayrhofer, K. J. J.: Oxygen evolution activity and stability of iridium in acidic media. Part 2. – Electrochemically Grown Hydrous Iridium Oxide. Journal of Electroanalytical Chemistry 774, pp. 102 - 110 (2016)
Bandarenka, A. S.; Mayrhofer, K. J. J.: Electrocatalysis for sustainable energy conversion or electrocatalysis today Preface. Catalysis Today 262, p. 1 (2016)
Cherevko, S.; Keeley, G. P.; Kulyk, N.; Mayrhofer, K. J. J.: Pt Sub-Monolayer on Au: System Stability and Insights into Platinum Electrochemical Dissolution. Journal of the Electrochemical Society 163 (3), pp. H228 - H233 (2016)
Keeley, G. P.; Cherevko, S.; Mayrhofer, K. J. J.: The Stability Challenge on the Pathway to Low and Ultra-Low Platinum Loading for Oxygen Reduction in Fuel Cells. ChemElectroChem 3 (1), pp. 51 - 54 (2016)
Reier, T.; Pawolek, Z.; Cherevko, S.; Bruns, M.; Jones, T.; Teschner, D.; Selve, S.; Bergmann, A.; Nong, H. N.; Schloegl, R.et al.; Mayrhofer, K. J. J.; Strasser, P.: Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER). Journal of the American Chemical Society 137 (40), pp. 13031 - 13040 (2015)
Beese-Vasbender, P. F.; Nayak, S.; Erbe, A.; Stratmann, M.; Mayrhofer, K. J. J.: Electrochemical characterization of direct electron uptake in electrical microbially influenced corrosion of iron by the lithoautotrophic SRB Desulfopila corrodens strain IS4. Electrochimica Acta 167, pp. 321 - 329 (2015)
Mezzavilla, S.; Baldizzone, C.; Mayrhofer, K. J. J.; Schüth, F.: General Method for the Synthesis of Hollow Mesoporous Carbon Spheres with Tunable Textural Properties. ACS Applied Materials and Interfaces 7 (13), pp. 12914 - 12922 (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…