Uebel, M.; Rabe, M.; Rohwerder, M.: The Influence of Microstructure on Zn–Al–Mg Alloy Reactivity: A SKP-based Approach. Scientific Advisory Board Meeting 2019, 6-years Evaluation of the Max-Planck-Institut für Eisenforschung GmbH – Scientific Highlights Session, Düsseldorf, Germany (2019)
Rohwerder, M.: Die Kelvinsondentechnik in der Korrosion: von der Grundlagenforschung bis hin zu potentiellen Anwendungen im Feld. ProcessNet Meeting “Elektrochemische Prozesse”, Dechema-Haus, Frankfurt, Germany (2019)
Uebel, M.; Rohwerder, M.: The influence of microstructure on Zn–Al–Mg alloy reactivity investigated by SKP and SKPFM in changing atmospheres. Eurocorr 2018, Krakow, Poland (2018)
Rohwerder, M.; Tran, T. H.: Novel zinc-nanocontainer composite coatings for intelligent corrosion protection. 11th Intrenational Conference on Zinc And Zinc Alloy Coated Steel Sheet- GALVATECH 2017, The University of Tokyo, Tokyo, Japan (2017)
Merz, A.; Rohwerder, M.: Corrosion protection by composite coatings containing conducting polymer particles: elucidation of the “protection zone”. 232nd ECS Fall Meeting 2017, National Harbour, USA (2017)
Rohwerder, M.: Organic coatings for corrosion protection: self-healing at the delaminated interface. 232th Meeting of the Electrochemical Society, National Harbor, USA (2017)
Uebel, M.; Rohwerder, M.: Capsular networking and accelerated trigger signal spreading velocity in smart redox responsive coatings for corrosion protection. 232nd ECS Fall Meeting 2017, National Harbor, MD (greater Washington, DC area), USA (2017)
Rohwerder, M.: A Novel Potentiometric Approach to a Quantitative Characterization of Oxygen Reduction Kinetics at Buried Interfaces and under Ultrathin Electrolyte Layers. ECASIA 2017, Montpellier, France (2017)
Rohwerder, M.: A Novel Potentiometric Approach to a Quantitative Characterization of Oxygen Reduction Kinetics at Buried Interfaces and under Ultrathin Electrolyte Layers. Second International Conference on Electrochemical Science and Technology – ICONEST 2017, Indian Institute of Science, Bangalore, India (2017)
Uebel, M.; Rohwerder, M.: The impact of trigger signal spreading velocity on self-healing performance in smart anti-corrosion coatings. 6th International Conference on Self-Healing Materials (ICSHM) 2017, Friedrichshafen, Germany (2017)
Rohwerder, M.: Novel Approaches for Characterizing the Delamination resistance of Organic Coatings. 10th International Workshop on Application of Electrochemical Techniques to Organic Coatings –AETOC, Billerbeck, Germany (2017)
Kerger, P.; Rohwerder, M.; Vogel, D.: Using a Novel In-situ/Operando Chemical Cell to Investigate Surface Reactions such as the Reduction of Oxygen and Surface Oxides. AVS 63rd International Symposium & Exhibition, Nashville, TN, USA (2016)
Rohwerder, M.: Novel Approaches for Characterizing the Delamination resistance of Organic Coatings. 230th ECS Meeting-PRiME 2016, Honolulu, HI, USA (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
Deviations from the ideal, stoichiometric composition of tcp (tetrahedrally close-packed) intermetallic phases as, e.g., Laves phases can be partially compensated by point defects like antisite atoms or vacancies, but also planar defects may offer an opportunity to accommodate excess atoms.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.