Camuti, L.; Kim, S.-H.; Podjaski, F.; Vega-Paredes, M.; Mingers, A. M.; Acartürk, T.; Starke, U.; Lotsch, B. V.; Scheu, C.; Gault, B.et al.; Zhang, S.: Kinetics and direct imaging of electrochemically formed palladium hydride for efficient hydrogen evolution reaction. Physics > Chemical Physics (2025)
Cheraparambil, H.; Vega-Paredes, M.; Scheu, C.; Weidenthaler, C.: Unraveling the Evolution of Dynamic Active Sites of LaNixFe1-xO3 Catalysts During OER. ACS Applied Materials & Interfaces 16 (17), pp. 21997 - 22006 (2024)
Vega-Paredes, M.; Scheu, C.; Aymerich Armengol, R.: Expanding the Potential of Identical Location Scanning Transmission Electron Microscopy for Gas Evolving Reactions: Stability of Rhenium Molybdenum Disulfide Nanocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials and Interfaces 15 (40), pp. 46895 - 46901 (2023)
Liang, Y.; Mrovec, M.; Lysogorskiy, Y.; Vega-Paredes, M.; Scheu, C.; Drautz, R.: Atomic cluster expansion for Pt–Rh catalysts: From ab initio to the simulation of nanoclusters in few steps. Journal of Materials Research 38, pp. 5125 - 5135 (2023)
Berova, V.; Garzón-Manjón, A.; Vega-Paredes, M.; Scheu, C.; Jurzinsky, T.: Influence of Shell Thickness on Durability of Ru@Pt Core-Shell Catalysts for Reformate PEM Fuel Cells. In ECS Meeting Abstracts, MA2022-01 (35), p. 1528. The Electrochemical Society (2022)
Vega-Paredes, M.; Aymerich Armengol, R.; Scheu, C.: Determining the degradation mechanisms and active species of electrocatalysts by identical location electron microscopy. NRF-DFG meeting “Electrodes for direct sea-water splitting and microstructure based stability analyses”, Korean Institute for Energy Research, Jeju, South Korea (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.