Gedsun, A.; Stein, F.; Palm, M.: Phase Equilibria in the Fe-Al-Nb(-B) System at 700 degrees C. Journal of Phase Equilibra and Diffusion 43 (4), pp. 409 - 418 (2022)
Gedsun, A.; Stein, F.; Palm, M.: Development of new Fe–Al–Nb(–B) alloys for structural applications at high temperatures. MRS Advances 6, pp. 176 - 182 (2021)
Gedsun, A.; Palm, M.: Development of Fe–Al–Nb(–B) alloys for high-temperature applications. In: Proceedings Intermetallics, pp. 208 - 209. Intermetallics, Bad Staffelstein, Germany, September 30, 2019 - October 04, 2019. (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…