Han, F.; Diehl, M.; Roters, F.; Raabe, D.: Multi-scale modeling of plasticity. ICIAM 2019 - The 9th International Congress on Industrial and Applied Mathematics, Valencia, Spain (2019)
Sedighiani, K.; Diehl, M.; Roters, F.; Sietsma, J.; Raabe, D.: Obtaining constitutive parameters for a physics-based crystal plasticity model from macro-scale behavior. International Conference on Plasticity, Damage, and Fracture , Panama City, Panama (2019)
Diehl, M.; Kühbach, M.; Raabe, D.: Experimental–computational analysis of primary static recrystallizazion in DC04 steel. 9th International Conference on Multiscale Materials Modeling , Osaka, Japan (2018)
Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Roters, F.; Raabe, D.: DAMASK - Düsseldorf Advanced Material Simulation Kit. Seminar of the Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA (2018)
Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Roters, F.; Raabe, D.: DAMASK - Düsseldorf Advanced Material Simulation Kit. Seminar of the Department of Mechanical Engineering, Villanova University, Villanova, PA, USA (2018)
Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Roters, F.; Raabe, D.: DAMASK - The Düsseldorf Advanced Material Simulation Kit for Modeling Multi-Physics Crystal Plasticity, Thermal, and Damage Phenomena. WCCM 2018, 13th World Congress in Computational Mechanics, New York, USA (2018)
Han, F.; Diehl, M.; Roters, F.; Raabe, D.: Multi-scale modelling of sheet metal forming by coupling FEM with a CP-Spectral solver using the DAMASK modelling package. 10th European Solid Mechanics Conference (ESMC2018), Bologna, Italy (2018)
Roters, F.; Diehl, M.; Wong, S. L.; Shanthraj, P.; Raabe, D.: DAMASK: the Düsseldorf Advanced MAterial Simulation Kit for studying multi-physics crystal plasticity phenomena. 10 Years ICAMS - International Symposium, Bochum, Germany (2018)
Roters, F.; Diehl, M.; Shanthraj, P.: Coupled Experimental-Numerical Analysis of Strain Partitioning in Metallic Microstructures: The Importance of a 3D Neighborhood. Schöntal Symposium on 'Dislocation based Plasticity, Schöntal, Germany (2018)
Roters, F.; Sharma, L.; Diehl, M.; Shanthraj, P.: Including Damage Modelling into Crystal Plasticity Simulations using the Düsseldorf Advanced Material Simulation Kit DAMASK. Symposium Nano and Micro Scale Damage in Metals, Utrecht, The Netherlands (2018)
Diehl, M.; Shanthraj, P.; Roters, F.; Raabe, D.: Simulation Study on Plasticity and Fracture in Aluminium Based on Real Microstructures. TMS 2018 Annual Meeting & Exhibition, Phoenix, AZ, USA (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.