Jägle, E. A.: Impact of the process gas atmosphere in Laser Additive Manufacturing – desired and undesired effects. Alloys for Additive Manufacturing Symposium 2018, Sheffield, UK (2018)
Kürnsteiner, P.; Wilms, M. B.; Weisheit, A.; Jägle, E. A.; Raabe, D.: Preventing the Coarsening of Al3Sc Precipitates by the Formation of a Zr-rich Shell During Laser Metal Deposition. TMS2018 Annual Meeting & Exhibition, Phoenix, AZ, USA (2018)
Jägle, E. A.: Ex-situ and in-situ heat treatment of alloys during Laser Additive Manufacturing. AWT Kolloquium, Institut für Werkstofftechnik, Bremen, Germany (2017)
Jägle, E. A.: Additive Manufacturing and 3D Printing - What’s beyond the hype? Institute Lecture at Indian Institute of Technology Roorkee, Roorkee, India (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Plenary presentation, Advances in Materials & Processing: Challenges and Opportunities, Indian Institute of Technology Roorkee, Roorkee, India (2017)
Jägle, E. A.: Exploiting the Intrinsic Heat Treatment during Laser Additive Manufacturing to trigger Precipitation Reactions. International Mechanical Engineering Congress & Exposition (IMECE), Tampa, FL, USA (2017)
Kürnsteiner, P.; Wilms, M. B.; Weisheit, A.; Jägle, E. A.; Raabe, D.: In-process precipitation strengthening in Al–Sc during Laser Metal Deposition by exploiting the Intrinsic Heat Treatment. Alloys for Additive Manufacturing Symposium, Zürich, Switzerland (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Seminar talk at Culham Center for Fusion Energy, Oxford, Oxford, UK (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Laser-Kolloquium at Fraunhofer Institut für Lasertechnik, Aachen, Aachen, Germany (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Seminar talk at Institut für Umformtechnik und Leichtbau, TU Dortmund, Dortmund, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…