Stein, F.; Vogel, S. C.; Eumann, M.; Palm, M.: Determination of the crystal structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. Intermetallics 18 (1), pp. 150 - 156 (2010)
Krein, R.; Palm, M.; Heilmaier, M.: Characterization of microstructures, mechanical properties, and oxidation behavior of coherent A2 + L21 Fe–Al–Ti. Journal of Materials Research 24 (11), pp. 3412 - 3421 (2009)
Palm, M.: Phase equilibria in the Fe corner of the Fe–Al–Nb system between 800 and 1150°C. Journal of Alloys and Compounds 475 (1-2), pp. 173 - 177 (2009)
Palm, M.: Fe–Al materials for structural applications at high temperatures: Current research at MPIE. International Journal of Materials Research 100 (3), pp. 277 - 287 (2009)
Eumann, M.; Sauthoff, G.; Palm, M.: Phase equilibria in the Fe–Al–Mo system - Part II: Isothermal sections at 1000 and 1150 °C. Intermetallics 16 (6), pp. 834 - 846 (2008)
Krein, R.; Palm, M.: The influence of Cr and B additions on the mechanical properties and oxidation behaviour of L21-ordered Fe-Al-Ti-based alloys at high temperatures. Acta Materialia 56 (10), pp. 2400 - 2405 (2008)
Eumann, M.; Sauthoff, G.; Palm, M.: Phase equilibria in the Fe–Al–Mo system - Part I: Stability of the Laves phase Fe2Mo and isothermal section at 800 °C. Intermetallics 16 (5), pp. 706 - 716 (2008)
Stein, F.; Palm, M.: Re-determination of transition temperatures in the Fe–Al system by differential thermal analysis. International Journal of Materials Research 98 (7), pp. 580 - 588 (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.