Ram, F.; Zaefferer, S.: Plastic strain derivation and Kikuchi band localization by applying the Kikuchi bandlet method to electron backscatter Kikuchi Diffraction patterns. 17th ICOTOM, Dresden; Germany (2014)
Zaefferer, S.: SEM and TEM based orientation microscopy for investigation of recrystallization processes. CNRS summer school on recrystallization, Frejus, France (2014)
Herbig, M.; Raabe, D.; Li, Y. J.; Choi, P.; Zaefferer, S.; Goto, S.: Quantification of Grain Boundary Segregation in Nanocrystalline Material. Seminar at Department Microstructure Physics and Alloy Design, MPI für Eisenforschung, Düsseldorf, Germany (2013)
Zaefferer, S.; Elhami, N. N.: Electron Channelling Contrast Imaging under controlled diffraction conditions, cECCI - Theory and Applications. CEMEF, Sofia-Antipolis, France (2013)
Zaefferer, S.; Kleindiek, S.; Schock, K.; Volbert, B.: Combined Application of EBSD and ECCI Using a Versatile 5-Axes Goniometer in an SEM. Microscopy and Microanalysis 2013, Indianapolis, IN, USA (2013)
Zaefferer, S.; Elhami, N. N.; Konijnenberg, P. J.; Jäpel, T.: Quantitative Microstructure Characterization by Application of Advanced SEM-Based Electron Diffraction Techniques. Microscopy and Microanalysis 2013, Indianapolis, IN, USA (2013)
Raabe, D.; Choi, P.; Herbig, M.; Li, Y.; Zaefferer, S.; Kirchheim, R.: Iron – Mythology and High Tech: From Electronic Understanding to Bulk Nanostructuring of 1 Billion Tons. Summer School 2013 on Functional Solids – FERRUM - organized by Leibniz University Hannover, Goslar, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.