Fujita, N.; Igi, S.; Diehl, M.; Roters, F.; Raabe, D.: The through-process texture analysis of plate rolling by coupling finite element and fast Fourier transform crystal plasticity analysis. Modelling and Simulation in Materials Science and Engineering 27, 085005 (2019)
Springer, H.; Zhang, J.; Szczepaniak, A.; Belde, M. M.; Gault, B.; Raabe, D.: Light, strong and cost effective: Martensitic steels based on the Fe - Al - C system. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 762, 138088 (2019)
Palanisamy, D.; Raabe, D.; Gault, B.: On the compositional partitioning during phase transformation in a binary ferromagnetic MnAl alloy. Acta Materialia 174, pp. 227 - 236 (2019)
He, Z. F.; Jia, N.; Ma, D.; Yan, H.-L.; Li, Z.; Raabe, D.: Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 759, pp. 437 - 447 (2019)
Diehl, M.; Kertsch, L.; Traka, K.; Helm, D.; Raabe, D.: Site-specific quasi in situ investigation of primary static recrystallization in a low carbon steel. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 755, pp. 295 - 306 (2019)
Souza Filho, I. R.; Sandim, M. J. R.; Ponge, D.; Sandim, H. R. Z.; Raabe, D.: Strain hardening mechanisms during cold rolling of a high-Mn steel: Interplay between submicron defects and microtexture. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 754, pp. 636 - 649 (2019)
Wang, Z.; Lu, W.; Raabe, D.; Li, Z.: On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions. Journal of Alloys and Compounds 781, pp. 734 - 743 (2019)
Almeida Junior, D. R.; Zilnyk, K. D.; Raabe, D.; Sandim, H. R. Z.: Reconstructing the austenite parent microstructure of martensitic steels: A case study for reduced-activation Eurofer steels. Journal of Nuclear Materials 516, pp. 185 - 193 (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…