Schneider, W. B.; Benedikt, U.; Auer, A. A.: Interaction of platinum nanoparticles with graphitic carbon structures: A computational study. ChemPhysChem 14 (13), pp. 2984 - 2989 (2013)
Kettner, M.; Benedikt, U.; Schneider, W.; Auer, A. A.: Computational Study of Pt/Co Core-Shell Nanoparticles: Segregation, Adsorbates and Catalyst Activity. Journal of Physical Chemistry C 116 (29), pp. 15432 - 15438 (2012)
Auer, A. A.; Richter, A.; Berezkin, A. V.; Guseva, D. V.; Spange, S.: Theoretical study of twin polymerization – From chemical reactivity to structure formation. Macromolecular Theory Simulations 21 (9), pp. 615 - 628 (2012)
Benedikt, U.; Auer, A. A.; Espig, M.; Hackbusch, W.: Tensor decomposition in post-Hartree-Fock methods. I. Two-electron integrals and MP2. Journal of Chemical Physics 134 (5), 054118, pp. 1 - 12 (2011)
Berezkin, A. V.; Biedermann, P. U.; Auer, A. A.: Mesoscale simulation of network formation and structure, combining molecular dynamics and kinetic Monte Carlo approaches. European Polymer Congress 2011, Granada, Spain, June 26, 2011 - July 01, 2011. (2011)
Berezkin, A. V.; Biedermann, P. U.; Auer, A. A.: Mesoscale simulation of network formation and structure, combining molecular dynamics and kinetic Monte Carlo approaches. European Polymer Congress 2011, Granada, Spain (2011)
Challenges for Theory in Electrochemistry. Minisymposium "Challenges for Theory in Electrochemistry", MPI für Eisenforschung GmbH, Düsseldorf, Germany (2010)
Perspectives in Quantum chemistry for Electrochemistry. Minisymposium "Perspectives in Quantum chemistry for Electrochemistry", Center for Electrochemical Sciences, Ruhr-Universität Bochum, Germany (2010)
Benedikt, U.; Schneider, W.; Auer, A. A.: Oxygen Reduction Reaction on Pt-Nanoparticles: A Density-Functional Based Study. 46th Symposium on Theoretical Chemistry, STC2010, Münster, Germany (2010)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The computational materials design department in collaboration with the Technical University Darmstadt and the Ruhr University Bochum developed a workflow to calculate phase diagrams from ab-initio. This achievement is based on the expertise in the ab-initio thermodynamics in combination with the recent advancements in machine-learned interatomic…
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.
In order to estimate the kinetics of thermally activated processes, one must determine the energy of the transition state. This transition state is a first-order saddle point on the potential energy surface, i.e., it is a maximum along the reaction coordinate, but a minimum with respect to all other directions in configurational space. We have…
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and…