Schuster, J. C.; Palm, M.: Ressessment of the Binary Aluminium – Titanium Phase Diagram. Journal of Phase Equilibria and Diffusion 27 (3), pp. 255 - 277 (2006)
Groessinger, R.; Antoni, M.; Sorta, S.; Palm, M.; Schuster, J. C.; Hiebl, K.: Magnetic Properties of Fe56.7Ni10Si33.3. In: IEEE Transactions on Magnetics, Vol. 50, 2003404. Published by the Institute of Electrical and Electronics Engineers for the Magnetics Group, New York, NY (2014)
Stein, F.; Prymak, O.; Dovbenko, O. I.; He, C.; Palm, M.; Schuster, J. C.: Investigation of Phase Diagrams of Laves Phase Containing Binary and Ternary Nb–TM(–Al) Systems with TM=Cr,Fe,Co. 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and Their Applications to Solidification, Kornelimünster, Aachen, Germany (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.