Ramana, E. V.; Durairajan, A.; Kavitha, D.; Tobaldi, D. M.; Zavašnik, J.; Bdikin, I.; Valente, M. A.: Enhanced magnetoelectric and energy storage performance of strain-modified PVDF-Ba0.7Ca0.3TiO3-Co0.6Zn0.4Fe2O4nanocomposites. Journal of energy storage 87, 111454 (2024)
Öcal, E. B.; Sajadifa, S. V.; Sellner, E. P. K.; Vollmer, M.; Heidarzadeh, A.; Zavašnik, J.; Niendorf, T.; Groche, P.: Functionally Graded AA7075 Components Produced via Hot Stamping: A Novel Process Design Inspired from Analysis of Microstructure and Mechanical Properties. Advanced Engineering Materials - Special Issue: Structural Materials 25 (15), 2201879 (2023)
Sajadifar, S. V.; Suckow, T.; Chandra, C. K.; Heider, B.; Heidarzadeh, A.; Zavašnik, J.; Reitz, R.; Oechsner, M.; Groche, P.; Niendorf, T.: Assessment of the impact of process parameters on the final material properties in forming of EN AW 7075 employing a simulated forming process. Journal of Manufacturing Processes 86, pp. 336 - 353 (2023)
Entezari, H.; Kashi, M. A.; Alikhanzadeh-Arani, S.; Montazer, A.H.; Zavašnik, J.: In situ precipitation synthesis of FeNi/ZnO nanocomposites with high microwave absorption properties. Materials Chemistry and Physics 266, 124508 (2021)
Žerjav, G.; Teržan, J.; Djinović, P.; Barbieriková, Z.; Hajdu, T.; Brezová, V.; Zavašnik, J.; Kovač, J.; Pintar, A.: TiO2–β–Bi2O3 junction as a leverage for the visible-light activity of TiO2 based catalyst used for environmental applications. Catalysis Today 361, pp. 165 - 175 (2021)
Djinović, P.; Zavašnik, J.; Teržan, J.; Jerman, I.: Role of CO2 During Oxidative Dehydrogenation of Propane Over Bulk and Activated-Carbon Supported Cerium and Vanadium Based Catalysts. Catalysis Letters 151 (10), pp. 2816 - 2832 (2021)
Taherzadeh Mousavian, R.; Zavašnik, J.; Heidarzadeh, A.; Bahramyan, M.; Vijayaraghavan, R. K.; McCarthy, É.; Clarkin, O. M.; McNally, P. J.; Brabazon, D.: Development of BMG-B2 nanocomposite structure in HAZ during laser surface processing of ZrCuNiAlTi bulk metallic glasses. Applied Surface Science 505, 144535 (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…