Jo, M. C.; Choi, J. H.; Lee, H.; Zargaran, A.; Ryu, J.; Sohn, S. S.; Kim, N. J.; Lee, S.: Effects of solute segregation on tensile properties and serration behavior in ultra-high-strength high-Mn TRIP steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 740-741, pp. 16 - 27 (2019)
Jo, M. C.; Lee, H.; Zargaran, A.; Ryu, J.; Sohn, S. S.; Kim, N. J.; Lee, S.: Exceptional combination of ultra-high strength and excellent ductility by inevitably generated Mn-segregation in austenitic steel. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 737, pp. 69 - 76 (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…