Jentner, R.; Tsai, S.-P.; Welle, A.; Scholl, S.; Srivastava, K.; Best, J. P.; Kirchlechner, C.; Dehm, G.: Automated classification of granular bainite and polygonal ferrite by electron backscatter diffraction verified through local structural and mechanical analyses. Journal of Materials Research 38 (18), pp. 4177 - 4191 (2023)
Tsai, S.-P.; Konijnenberg, P. J.; Gonzalez, I.; Hartke, S.; Griffiths, T. A.; Herbig, M.; Kawano-Miyata, K.; Taniyama, A.; Sano, N.; Zaefferer, S.: Development of a new, fully automated system for electron backscatter diffraction (EBSD)-based large volume three-dimensional microstructure mapping using serial sectioning by mechanical polishing, and its application to the analysis of special boundaries in 316L stainless steel. Review of Scientific Instruments 93, 093707 (2022)
Nandy, S.; Tsai, S.-P.; Stephenson, L.; Raabe, D.; Zaefferer, S.: The role of Ca, Al and Zn on room temperature ductility and grain boundary cohesion of magnesium. Journal of Magnesium and Alloys 9 (5), pp. 1521 - 1536 (2021)
Tsai, S.-P.; Zaefferer, S.: Large-volume 3D EBSD system and its application to the investigation of grain boundary corrosion in 316L stainless steel. 3D MS conference, online (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.