Jentner, R.; Scholl, S.; Srivastava, K.; Best, J. P.; Kirchlechner, C.; Dehm, G.: Local strength of bainitic and ferritic HSLA steel constituents understood using correlative electron microscopy and microcompression testing. Materials and Design 236, 112507 (2023)
Jentner, R.; Tsai, S.-P.; Welle, A.; Scholl, S.; Srivastava, K.; Best, J. P.; Kirchlechner, C.; Dehm, G.: Automated classification of granular bainite and polygonal ferrite by electron backscatter diffraction verified through local structural and mechanical analyses. Journal of Materials Research 38 (18), pp. 4177 - 4191 (2023)
Li, J.; Pharr, G. M.; Kirchlechner, C.: Quantitative insights into the dislocation source behavior of twin boundaries suggest a new dislocation source mechanism. Journal of Materials Research 36 (10), pp. 2037 - 2046 (2021)
Tian, C.; Dehm, G.; Kirchlechner, C.: Influence of strain rate on the activation of {110}, {112}, {123} slip in ferrite of DP800. Materialia 15, 100983 (2021)
Tian, C.; Kirchlechner, C.: The fracture toughness of martensite islands in dual-phase DP800 steel. Journal of Materials Research 36, pp. 2495 - 2504 (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…