Ram, F.; Zaefferer, S.; Jäpel, T.; Raabe, D.: Error analysis of the crystal orientations and disorientations obtained by the classical electron backscatter diffraction technique. Journal of Applied Crystallography 48 (3), pp. 797 - 813 (2015)
Schäffer, A. K.; Jäpel, T.; Zaefferer, S.; Abart, R.; Rhede, D.: Lattice strain across Na–K interdiffusion fronts in alkali feldspar: An electron back-scatter diffraction study. Physics and Chemistry of Minerals 41 (10), pp. 795 - 804 (2014)
Zaefferer, S.; Elhami, N. N.; Konijnenberg, P. J.; Jäpel, T.: Quantitative Microstructure Characterization by Application of Advanced SEM-Based Electron Diffraction Techniques. Microscopy and Microanalysis 2013, Indianapolis, IN, USA (2013)
Jäpel, T.: Grundlagen der Kreuzkorrelationsmethode (delta-EBSD): Einführung in CrossCourt3 (CC3) und Erfahrungen in der praktischen Anwendung von CC3. Seminar Talk at Arbeitskreis EBSD in Garbsen, Garbsen, Germany (2012)
Kords, C.; Jäpel, T.; Eisenlohr, P.; Roters, F.: Residual stress prediction by considering dislocation density advection in 3D applied to single-crystal bending. Euromat 2011, Montpellier, France (2011)
Zaefferer, S.; Jäpel, T.; Tasan, C. C.; Konijnenberg, P.: Detailed observation of martensite transformation and twinning in TRIP and TWIP steels using advanced SEM diffraction techniques. ICOMAT 2011, Osaka, Japan (2011)
Kords, C.; Jäpel, T.; Eisenlohr, P.; Roters, F.: Residual stress prediction by considering dislocation density advection in 3D applied to single-crystal bending. 2nd International Conference on Material Modelling ICMM 2, Paris, France (2011)
Ram, F.; Zaefferer, S.; Jäpel, T.: Error Analysis of the Crystal Orientations and Misorientations obtained by the Classical Electron Backscatter Diffraction Method. RMS EBSD 2014, London, UK (2014)
Ram, F.; Zaefferer, S.; Jäpel, T.: On the accuracy and precision of orientations obtained by the conventional automated EBSD method. RMS EBSD 2014, London, UK (2014)
Jäpel, T.: Feasibility study on local elastic strain measurements with an EBSD pattern cross correlation method in elastic-plastically deforming material. Dissertation, RWTH Aachen, Aachen, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…