Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: The free energy of bcc iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: The free energy of bcc iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions. International Workshop on Ab initio Description of Iron and Steel (ADIS2008), Ringberg Castle, Germany (2008)
Dutta, B.; Körmann, F.; Alling, B.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Interaction of magnetic and lattice degrees of freedom. International Workshop on Ab initio Description of Iron and Steel: Mechanical Properties (ADIS 2016), Ringberg Castle, Tegernsee, Germany (2016)
Zendegani, A.; Körmann, F.; Hickel, T.; Hallstedt, B.; Neugebauer, J.: Thermodynamic properties of the quaternary Q phase in Al–Cu–Mg–Si: A combined ab-initio, phonon and compound energy formalism approach. The Materials Chain: From Discovery to Production, International Conference, Bochum, Germany (2016)
Körmann, F.; Dick, A.; Hickel, T.; Neugebauer, J.: Integrating finite temperature magnetism into ab initio free energy calculations. Calphad XL, Rio de Janeiro, Brazil (2011)
Körmann, F.; Dick, A.; Hickel, T.; Neugebauer, J.: Integrating finite temperature magnetism into ab initio free energy calculations. TMS 2011 Annual Meeting, San Diego, CA, USA (2011)
Hickel, T.; Körmann, F.; Dick, A.; Neugebauer, J.: Fully ab initio based determination of magnetic contributions to the free energy of metals. Psi-k Conference 2010, Berlin, Germany (2010)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Magnetic contributions to the Thermodynamics of iron and Cementite. 448. WE-Heraeus-Seminar "Excitement in magnetism", Ringberg Castle, Tegernsee, Germany (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…