Evers, S.; Senöz, C.; Rohwerder, M.: Hydrogen detection in metals: A review and introduction of a Kelvin probe approach. Science and Technology of Advanced Materials 14 (1), 014201 (2013)
Maljusch, A.; Senöz, C.; Rohwerder, M.; Schuhmann, W.: Combined high resolution scanning Kelvin probe - Scanning electrochemical microscopy investigations for the visualization of local corrosion processes. Electrochimica Acta 82, pp. 339 - 348 (2012)
Senöz, C.; Borodin, S.; Stratmann, M.; Rohwerder, M.: In-situ detection of differences in the electrochemical activity of Al2Cu IMPs and investigation of their effect on FFC by scanning Kelvin probe force microscopy. Corrosion Science 58, pp. 307 - 314 (2012)
Senöz, C.; Maljusch, A.; Rohwerder, M.; Schuhmann, W.: SECM and SKPFM studies of the local corrosion mechanism of Al alloys-A pathway to an integrated SKP-SECM system. Electroanalysis 24 (2), pp. 239 - 245 (2012)
Senöz, C.; Evers, S.; Stratmann, M.; Rohwerder, M.: Scanning Kelvin Probe as a highly sensitive tool for detecting hydrogen permeation with high local resolution. Electrochemistry Communucations 13 (12), pp. 1542 - 1545 (2011)
Senöz, C.; Rohwerder, M.: Scanning Kelvin probe force microscopy for the in situ observation of the direct interaction between active head and intermetallic particles in filiform corrosion on aluminium alloy. Electrochimica Acta 56 (26), pp. 9588 - 9595 (2011)
Merzlikin, S. V.; Bashir, A.; Evers, S.; Senöz, C.; Rohwerder, M.: Using Scanning Kelvin Probe Force Microscopy and Thermal Desorption for Localized Hydrogen Detection and Quantification in Steels. 2nd International Conference on hydrogen in Steels, Gent, Belgium (2014)
Evers, S.; Senöz, C.; Rohwerder, M.: Investigation of the Interaction between H2 and trap sites in Duplex Steel by Scanning Kelvin Probe Force Microscopy. 63rd Annual Meeting of the International Society of Electrochemistry, Prague, Czech Republic (2012)
Senöz, C.; Rohwerder, M.: High Resolution Study of Hydrogen Permeation through Metals by Scanning Kelvin Probe Force Microscopy. 217th ECS Meeting, Vancouver, Canada (2010)
Senöz, C.; Rohwerder, M.: Application of Atomic Force Microscopy in its Kelvin Probe Mode (SKPFM) over Filiform Corrosion of Aluminum Alloys. Workshop on Scanning Probe Microscopies and Organic Materials XVII, Bremen, Germany (2009)
Senöz, C.; Maljusch, A.; Rohwerder, M.; Schuhmann, W.: Microstructural and Surface Potential Study of Al–4 wt% Cu–Mg (DURAL) Alloy. ICAA 11, 11th International Conference on Aluminium Alloys, Aachen, Germany (2008)
Senöz, C.: High resolution investigation of localized corrosion by in-situ SKPFM. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität Bochum, Bochum, Germany (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…