Palm, M.; Kainuma, R.; Inden, G.: Reinvestigation of Phase Equilibria in the Ti-rich Part of the Ti–Al System. In: Revue de Métallurgie, SF2M - JA96, p. 198. SF2M - JA96, Paris, France, October 15, 1996 - October 17, 1996. (1996)
Kainuma, R.; Palm, M.; Inden, G.: Experimental Investigation of High Temperature Equilibria in the Ti–Al System. In: Proceedings CALPHAD XXII, p. 90. CALPHAD XXII, Salou, Spain, May 16, 1993 - May 22, 1993. (1993)
Palm, M.; Kainuma, R.; Inden, G.: Reinvestigation of Phase Equilibria in the Ti-rich Part of the Ti–Al System. Journées d´Automne 1996, Paris, France (1996)
Kainuma, R.; Palm, M.; Inden, G.: Experimentelle Untersuchungen der Hochtemperaturgleichgewichte im System Ti–Al. DGM Hauptversammlung 1993, Friedrichshafen, Germany (1993)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.